
Team 51

Client/Advisor: Goce Trajcevski
.

Team Member Roles

Logan Anderson
Frontend Engineer,

Test Engineer

Nicholas Heger
Frontend Engineer,

Progress Manager

Steven Sheets

Backend Engineer,

Test Engineer,

Report Manager

James Volpe
Frontend/Backend

Engineer

Jared Weiland Backend Engineer
.

Team Email: sdmay21-51@iastate.edu

Team Website: https://sdmay21-51.sd.ece.iastate.edu

Revised: 11/13/2020 – Final Version

Constrained Re-Planning
in Spatial Crowdsourcing

DESIGN DOCUMENT

mailto:sdmay21-51@iastate.edu
https://sdmay21-51.sd.ece.iastate.edu/

1

Executive Summary

Development Standards & Practices Used
List all standard circuit, hardware, software practices used in this project. List all the
Engineering standards that apply to this project that were considered.

▪ Agile (Scrum/Kanban), Black-box testing
▪ Object-oriented programming
▪ Subscriber-publisher model
▪ 29119-4-2015 - ISO/IEC/IEEE International Standard - Software and

systems engineering--Software testing--Part 4: Test techniques
▪ 24748-3-2020 - ISO/IEC/IEEE International Standard - Systems and

software engineering--Life cycle management--Part 3: Guidelines for the
application of ISO/IEC/IEEE 12207 (software life cycle processes)

▪ 41062-2019 - ISO/IEC/IEEE International Standard - Software
engineering - Recommended practice for software acquisition

Summary of Requirements
List all requirements as bullet points in brief.

▪ Create/research algorithm for task management
▪ Create a server to host algorithm
▪ Create a database to store data for users and workers
▪ Develop both a mobile and web-based application to allow utilization of

optimized algorithm

Applicable Courses from Iowa State University Curriculum

▪ COM S 227: Object-oriented Programming
▪ COM S 228: Introduction to Data Structures
▪ COM S 309: Software Development Practices
▪ COM S 311: Introduction to the Design and Analysis of Algorithms
▪ COM S 363: Introduction to Database Management Systems
▪ CPR E 310: Theoretical Foundations of Computer Engineering
▪ S E 309: Software Development Practices
▪ S E 319: Construction of User Interfaces
▪ S E 329: Software Project Management
▪ S E 339: Software Architecture and Design

New Skills/Knowledge acquired that was not taught in courses

List all new skills/knowledge that your team acquired which was not part of your
Iowa State curriculum in order to complete this project.

▪ React
▪ Traffic API
▪ Task sorting/assignment algorithm
▪ MongoDB

2

Table of Contents

1 Introduction 4

1.1 Acknowledgement 4

1.2 Problem and Project Statement 4

1.3 Operational Environment 4

1.4 Requirements 4

1.5 Intended Users and Uses 5

1.6 Assumptions and Limitations 6

1.7 Expected End Product and Deliverables 6

2 Project Plan 6

2.1 Task Decomposition 6

2.2 Risks And Risk Management/Mitigation 8

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 8

2.4 Project Timeline/Schedule 9

2.5 Project Tracking Procedures 10

2.6 Personnel Effort Requirements 10

2.7 Other Resource Requirements 11

2.8 Financial Requirements 11

3 Design 11

3.1 Previous Work And Literature 11

3.2 Design Thinking 12

3.3 Proposed Design 13

3.4 Technology Considerations 13

3.5 Design Analysis 14

3.6 Development Process 14

3.7 Design Plan 15

4 Testing 17

4.1 Unit Testing 17

4.2 Interface Testing 17

4.3 Acceptance Testing 17

4.4 Results 17

5 Implementation 18

3

6 Closing Material 18

6.1 Conclusion 18

6.2 References 19

List of figures/tables/symbols/definitions

• Figure 1: Use-Case Diagram (Section 1.5, Page 5)

• Figure 2: Task Decomposition Diagram (Section 2.1, Page 7)

• Table 1: Table of Tasks (Section 2.1, Page 7)

• Figure 3: Gantt Chart (Section 2.4, Page 9)

• Table 2: Table of Estimated Time (Section 2.6, Page 10/11)

• Table 3: Timeline of Milestone Papers on Spatial Crowdsourcing

(Section 3.1, Page 11/12)

• Figure 4: Design Thinking Diagram (Section 3.2, Page 12)

• Figure 5: System Diagram (Section 3.7, Page 15)

• Table 4: Comparison of Existing Solutions to Task Assignment as a

Static Matching Problem (Section 3.7, Page 16)

4

1 Introduction

1.1 ACKNOWLEDGEMENT

We would like to acknowledge our faculty advisor, Goce Trajcevski, for his advice and guidance

throughout this project. Dr. Trajcevski has helped further our understanding of the project's goals

and has helped keep us on track and meeting deadlines. We would also like to thank our TA,

Rachel Shannon, for being consistently available to answer questions.

1.2 PROBLEM AND PROJECT STATEMENT

Spatial crowdsourcing (SC) is an increasingly popular category of crowdsourcing in the era of

mobile Internet and sharing economy, where tasks are spatiotemporal (belonging to both space

and time or space-time.) and must be completed at a specific location and time. It is a matching

problem whereby one has: (1) a set of workers with their skills and geolocations; (2) a set of job-

sites with tasks requiring specific skills (and, sometimes, there is a constraint on the sequence of

tasks). Spatial crowdsourcing determines workers' assignment to job-sites for a given task,

considering travel time. However, frequently there are unexpected time-disturbances – e.g., traffic

accidents, prolonged execution of previous tasks, etc., which render an existing assignment no

longer optimal (in terms of completed tasks per day).

This project aims to develop algorithms and tools that will re-plan the assignments of workers to

new/different job-sites when variables change unexpectedly. This is so that one can still optimize

the overall number of completed tasks per day while obeying certain constraints (e.g., minimizing

the overtime pay of the re-assigned workers).

1.3 OPERATIONAL ENVIRONMENT

The operational environment for this project will be web browsers and mobile devices. Since our

end products are a web app and mobile app, there will be no physical constraints our project

adheres to.

1.4 REQUIREMENTS

▪ Functional Requirements

o Allow task generators and workers to be able to create accounts (stored in DB)

o Take worker inputs of skills, location, and reputation

o Take task inputs of skills required and location

o Optimize a schedule based on worker and task inputs

o Re-optimize this schedule in the event of new information

o Alert workers of tasks to complete

o Web UI for the addition of tasks and visualization of work schedule

▪ Non-functional Requirements

o Function with few bugs or issues that impede the users' experience

o Protect users' personal information from others

o Optimized applications to run efficiently on mobile devices

o Be able to be used by a large number of users at one time

5

1.5 INTENDED USERS AND USES

This project's primary focus is to create an efficient algorithm to solve spatial crowdsourcing

problems where tasks need to be assigned to workers. As such, our end products (the web and

mobile applications) will be very versatile and could be used by any spatial crowdsourcing service

such as Uber or GrubHub. The intended users would then be any current or future users of any app

that seeks to use spatial crowdsourcing to accomplish tasks.

Figure 1: Use-Case Diagram

6

1.6 ASSUMPTIONS AND LIMITATIONS

▪ Assumptions

o Privacy is handled through outside sources. like location ghosting for hiding user

location

o There is only one task per assignment

o Tasks are assigned in sequence

▪ Limitations

o Traffic APIs have a processing cap on the number of routes that can be run per

period

o Will need to be able to run on multiple types of mobile devices

o Will need a connection to the Internet to receive updated information

1.7 EXPECTED END PRODUCT AND DELIVERABLES

The main deliverables from this project are expected to be a mobile (as well as desktop) app that

will take a set of tasks/workers assignment and the data used for such assignments. Upon

notification that some values in the data used for the original assignments have changes (e.g., the

average speed or travel-time along a road segment), the app will: (A) calculate the optimal re-

assignment; (B) notify the affected workers (and job-sites) who are subject to such re-assignment.

This will be finished and finalized by April 15.

2 Project Plan

2.1 TASK DECOMPOSITION

Solving the problem at hand helps to decompose it into multiple tasks and subtasks and

understand interdependence among tasks.

For our project, the tasks can be decomposed quite simply. Users known as "task generators" will

be stored in a database and generate a set of tasks, each task consisting of attributes such as

geolocation, necessary skills, and a time requirement for the sequence of jobs. Users known as

"workers" will also be stored in our database, each containing attributes such as geolocation, skill-

sets, ranking amongst other workers, and pricing (per hour). Finally, our objectives mainly focus on

assigning workers to tasks, assuming a single-task assignment, and a sequential assignment of

tasks.

The necessary tasks we must complete to complete are detailed in Table 1 on the following page:

7

Figure 2: Task Decomposition Diagram

Table 1: Table of Tasks

Task #
Planned

Completion Date
Task Description

1 Sep. 10
Complete familiarization with the literature and existing

approaches, decide running scenario/use-case.

2 Oct. 10 Finalize the selection of datasets to be used as sources.

3 Oct. 25
Finalize the selection of development platforms and provide

architecture design with preliminary UI format.

4 Nov. 10

Finalize the selection of algorithmic solutions; devise use-cases and

test-cases; develop test-plans (unit testing; integration testing;

etc.); provide basic UI functionality.

5 Nov. 20 Finalize and submit the design document; prepare presentation.

6 Jan. 25
Finalize the role/component assignments and start implementing

collaborative modules.

7 Feb. 15 Complete unit testing; begin integration testing.

8 Mar. 5 Provide alpha-version for end-user testing; collect feedback.

9 Mar. 20
Finalize the revisions; release beta-version; run another set of end-

user testing of functionalities.

10 Apr. 5 Finalize the user-manual; prepare for public release.

11 Apr. 15
Deploy the final version at GitHub/GitLab; start the final report

and presentation preparation.

8

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

▪ Task 1 & 2) methodology may not work with our project: 10%

o We find this unlikely as at this point; we should have enough information to make

an educated decision about which to use.

▪ Task 3) development studio does not work as intended: 50%

o If a studio does not work as intended and no significant work has been done, it

would be in the project's interest to switch to a different studio. If there is a fair

amount of work done, then it may be better to stick with it even if it does not work

as effectively as it could.

▪ Task 4) Test cases do not cover all necessary paths: 70%

o add more test cases to cover missing paths

o Testing does not work with studio: 40%

▪ Task 5) N/A

▪ Task 6) Team member don't like doing assigned tasks: 40%

o Team member falls behind on component: 70%

o Would need to find out why they are falling behind and adjust the schedule as

necessary.

▪ Task 7) Users don't like elements of the UI: 80%

o Rework UI components

o Users don't like functionality: 60%

o Try and make changes, but will not wholly rework

▪ Task 8) Identical to Task 7

▪ Task 9) Major issue is found before release: 10% or less

o Try and hotfix the issues for release before making more lasting repairs. Disable

troublesome features if needed.

▪ Task 10) N/A

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

The proposed milestones of our project have, in essence, a 1-1 correspondence with the tasks

described in Section 2.1. Many metrics/evaluation criteria can be used to evaluate our project. Some

are as follows:

▪ Usability: Is our code easily understood? Does the UI provide simple usage? Is our

documentation comprehensible?

▪ Speed: Is our software slow? Can it be faster? How could it be optimized? Load. Can our

software/database deal with large numbers of users? If not, how could the database be

improved?

▪ Bugs: Does our software have any bugs? How can they be squashed? Are they negatively

impacting user experience?

▪ Algorithmic Efficiency: Does the algorithm make efficient schedules? How efficient

should it be? Where do we draw the line between efficiency and practicality?

9

2.4 PROJECT TIMELINE/SCHEDULE

Figure 3: Gantt Chart

10

2.5 PROJECT TRACKING PROCEDURES

Trello will be used to set tasks and track progress. Major tasks are assigned with due dates. Tasks

that need to be done are entered into a TODO column. When someone starts working on a task,

the page is moved to doing and link their name to it. When the task is done it is moved to the done

and is archived. GitLab will be used for version control of the project. Documents related to the

project are kept on Google Drive to keep a single version of the project documentation. General

communication is being done through discord for communication history.

2.6 PERSONNEL EFFORT REQUIREMENTS

For each of these tasks, we set aside several days less than the time in-between tasks. This is an

estimation of the number of days it would take to complete if we spend merely half an hour each

day. Keep in mind; this is with the combined effort of 5 workers.

Table 3: Table of Estimated Time

Task #
Estimated Completion Time

(in hours)

1
7 days, 5 workers, 0.5 hours/day

7 ⋅ 5 ⋅ 0.5 = 15.75 hours

2
12 days, 5 workers, 0.5 hours/day

12 ⋅ 5 ⋅ 0.5 = 27 hours

3
8 days, 5 workers, 0.5 hours/day

8 ⋅ 5 ⋅ 0.5 = 18 hours

4
9 days, 5 workers, 0.5 hours/day

9 ⋅ 5 ⋅ 0.5 = 20.25 hours

5
6 days, 5 workers, 0.5 hours/day

6 ⋅ 5 ⋅ 0.5 = 15.75 hours

6
14 days, 5 workers, 0.5 hours/day

14 ⋅ 5 ⋅ 0.5 = 31.5 hours

7
16 days, 5 workers, 0.5 hours/day

16 ⋅ 5 ⋅ 0.5 = 36 hours

8
13 days, 5 workers, 0.5 hours/day

13 ⋅ 5 ⋅ 0.5 = 29.25 hours

9
10 days, 5 workers, 0.5 hours/day

10 ⋅ 5 ⋅ 0.5 = 22.5 hours

11

10
12 days, 5 workers, 0.5 hours/day

12 ⋅ 5 ⋅ 0.5 = 27 hours

11
8 days, 5 workers, 0.5 hours/day

8 ⋅ 5 ⋅ 0.5 = 18 hours

2.7 OTHER RESOURCE REQUIREMENTS

Physical devices will be required for testing of web clients and mobile apps. Web testing may be

done through any device with access to the Internet, and mobile testing may be done through a

mobile device or an emulator on a laptop or desktop computer. As most people have access to such

devices, it is unnecessary to acquire devices specifically for testing. A server is also required. If the

school provides the server, then no additional resources will be required.

2.8 FINANCIAL REQUIREMENTS

As the project progresses, a cost for the upkeep of the server may be needed. Since we anticipate a

server is provided for us through this course, however, there are no expected expenses at the

moment.

3 Design

3.1 PREVIOUS WORK AND LITERATURE

Our problem is one that has been studied for nearly a decade and is continuously being researched.

This is not unexpected, as spatial crowdsourcing has a natural, crucial connection with the physical

world, and examples of its use are easily demonstrated through services such as GrubHub or Uber.

Our primary reference is a survey Tong, Y., Zhou, Z., Zeng, Y. [1], which focuses on the

spatiotemporal factors of spatial crowdsourcing. There are many general surveys [2, 3, 4, 5] or

tutorials [6, 7, 8] on traditional Web-based crowdsourcing. There are also some surveys or tutorials

that focus on spatial crowdsourcing. E.g., Guo et al. [9] and Tong et al. [10] review task allocation of

spatial crowdsourcing. The following table illustrates a timeline of milestone papers concerning

spatial crowdsourcing.

Table 3: Timeline of Milestone Papers on Spatial Crowdsourcing

Year Reference Influence

2012 [11] First work of spatial crowdsourcing.

2013 [12] First work of static task matching in SC.

2013 [13] First work of quality control in SC.

2014 [14] First work of privacy protection in SC.

2014 [15] First work of general SC platform.

2015 [16] First work of dynamic task planning in SC.

12

2016 [17] First work of dynamic task matching in SC.

2016 [18] First experimental work of dynamic task matching in SC.

2018 [19] First work of incentive mechanism in SC.

2018 [20] First work of privacy protection in dynamic scenario.

3.2 DESIGN THINKING

Figure 4: Design Thinking Diagram

13

Before we even started planning the project, our team planned to create a sound and thorough
plan. To do this, we decide to use a design thinking diagram (see Figure 4). The first step in the
design thinking process is to empathize with our clients. To better understand our client, we have
had many meetings with our client and faculty advisor, Dr. Trajcevski, and listened to his ideas and
presented our ideas. During the define phase of our project, the objective was to narrow down the
problem we hope to solve. This involved choosing which factors our spatial crowdsourcing
algorithm needed to consider and determining what was outside the scope of our goals. In Section
1.6, we discuss some of the "define" process results, for example, assuming that privacy is handled
by an outside source and will not need to be implemented in our project. We also defined a set of
tasks to be completed for our project. This task set and decomposition diagram of these tasks can
be found in Section 2.1.

During the "ideate" phase, we discussed many different approaches to an algorithm that solves this
problem. More information regarding this decision process can be found in section 3.7. Figure 5,
shown in Section 3.7, shows the system's overall architecture that should be the deliverable, subject
to modifications. We have many iterations to the problem, such as the contexts of the use-cases.
Another complexity is considering the tradeoffs between different tools, technologies, and
frameworks. The following sections explore this in more detail. In addition to creating an
algorithm, our objective is to build a system. We had to consider the different available
technologies. The tradeoffs will be addressed in more detail in Section 3.5.

3.3 PROPOSED DESIGN

We will now break down the diagram from Section 3.2 into its components and explain its
technology.

The front end consists of a web application and a mobile application. The algorithm is part of the
backend architecture, which is being supported using Spring Boot. The algorithm will take tasks,
workers, and locations stored in the SQL database along with route information given by the
Google Maps Traffic API to generate routes for the tasks. It will then take these routes to create an
optimal route for tasks. Because of this the algorithm can recalculate these changes if new tasks are
added that affect the already created task schedules. These task schedules will then be assigned to
the worker they were generated for. This would then be stored in the database. The worker will
then use the frontend, either the web application created using React, or the mobile application
also created with React and Android Studio Java for the architecture. To access their list of tasks as
well as how to navigate them. Data will be communicated between frontend and backend using
JSON. The tasks listed in Section 2.1 will allow the completion of the function requirement listed in
Section 1.4.

3.4 TECHNOLOGY CONSIDERATIONS

We will discuss the different technologies that we researched and the reasons for choosing the

technology that we did.

There are many options for Traffic APIs. We looked at Google Maps, Bing Maps, MapBox,

Foursquare, PositionStack, and Mapquest Developer. We decided to use Google Maps because

 a) It is popular, meaning that the interface is familiar to users,

 b) clear developer documentation,

 c) is free if its usage is under $200 a month.

For creating the user interface, we research React and Angular. We decided on React because

implementation for both web and mobile means that less work needs to be done.

14

To develop the mobile application, we first looked at IDE options. We looked at Android Studio,

MIT App Inventor, and XCode. We decided to use Android Studio because it works well with Java,

which is the language we wanted to use due to its familiarity.

For the backend, we look at using Spring Boot and Django. We decided on Spring Boot because it is

designed for Java and would therefore integrate well with our Java/JavaScript based project.

The database on the backend was between SQL and MongoDB. We chose SQL because it is a

popular database system with a large amount of documentation and standardized across many

platforms.

To transfer data between the frontend and backend, we are using JSON. This is because the project

uses either JavaScript (interface) or Java. This means that JSON integrates well with projects since

that is what JSON is designed for.

For many of these technologies, we wanted to keep the project in Java or Java derivatives (like

JavaScript) to make implementation more manageable and reduce the likelihood of incompatibility

between different components. It would also allow developers to switch between components as

needed without needing to learn something completely different.

The algorithm will use a dynamic scheduling algorithm. This is because it allows for workers'

schedules to be updated as new tasks are added and for workers to plan more than a single task.

3.5 DESIGN ANALYSIS

We considered all the information to date and have made an analysis of the technologies involved,
as seen in section 3.4. This has convinced us that our design is the best way to implement this
problem. One reason for this, as mentioned in Section 3.4, is that the decided technologies are
based or are compatible with Java/JavaScript. This means a low likelihood of incompatibility
between components makes it easier for people to work on different components. Our design is
simple and straightforward; the fact that the algorithm is a separate component makes it easier to
change or swap out with other options without creating large problems in the system as a whole.
This will contribute to a microservice architecture with loose coupling between the algorithm and
the rest of the system.

While we are comfortable with the choices of technologies and architecture, there may be a need to
modify the design based on the notation's feasibility or based on changes of requirements. Because
of this, we will monitor the implementation and, if such a problem should arise, be agile enough to
pivot to a new design quickly. We also plan to release alpha and beta versions of the application so
users can test and provide feedback that we can then incorporate into the next iteration of the
mobile and web apps.

3.6 DEVELOPMENT PROCESS

As discussed earlier, we intend to implement an Agile development methodology to complete our
project. Notably, we will be following a Kanban model instead of the slightly more popular Scrum
model. This decision was made because, as a small team of just 5 members, and this being an
academic setting, the Kanban model allows for "less pressure." We still intend to finish everything
before their deadlines, but as deadlines for this course do not follow a strict 2-week schedule,
Scrum was chopped.

Additionally, we will use Trello to create tickets for each task that needs to be completed. Upon
starting a task, we will move the ticket into the "In Progress" column on Trello and create a branch

15

in our GitLab repository, if applicable. Once work is completed on the task, a pull request will be
created in GitLab, which will allow the team to review and request any changes to the
implementation of the ticket. Once approved, the branch can be merged into master (which will
serve as the "on-production" branch), and the pull request closed. This will ensure everyone on our
team approves of the changes, and we have a history we can go back to in case anything breaks.

3.7 DESIGN PLAN

As mentioned earlier in this document, there are many different facets of this problem – several

categories and variants. For each of these, we intend to develop proper use-cases. The back-and-

forth of this process will be in terms of identification of the commonalities and incongruencies of

such variants.

Let us investigate the table on the following page from the survey by Tong, Y., Zhou, Z., Zeng, Y. [1]

and pull some examples from there. With the "Greedy-GEACC" method, the objective is the total

payoff, and the only constraint tied with it is Capacity. This results in a specific time complexity

and will require its own unique tests, elaborated on in Section 4, Testing. Compare this method

with a completely different one, such as IDA, which has the primary objective of minimizing the

total distance travelled. These two methods, while having the overall same end goal, have two very

different objectives for optimization. Comparing these two methods in tests will give us even more

insight – e.g., IDA's tests need to ensure that the distance travelled is always the minimum across

multiple methods. Greedy-GEACC should ensure maximum profit is being made.

To fully elaborate on every unique facet of this problem in this document is, as they say, a tad bit

overkill. Fundamentally, we want our database/server to be universal, while the UI and algorithm is

flexible based on constraints. For a more thorough dive, please view the references for respective

topics.

Figure 5: System Diagram

16

Table 4: Comparison of Existing Solutions to Task Assignment as a Static Matching Problem

Method Objective Constraintsa
Time

Complexityb
Ratio

GR [11]
Maximizing total

number
Deadline, range - Optimal

SP-WR-A [21] Range - Heuristic

Temporal [22]
Deadline, range,

budget
- Heuristic

Greedy-GEACC
[23]

Maximizing total
payoff

Capacity 𝑂(𝑛3)
1

1 + 𝐶𝑚𝑎𝑥

g-D&C [24]
Deadline, range,

skill, budget
- Heuristic

ADAPTIVE [24]
Deadline, range,

skill, budget
- Heuristic

BASIC [25] Deadline, range - Optimal

IDA [26]
Minimizing total

distance
- - Optimal

CA [26] - - Heuristic

Allocation [27] Capacity 𝑂(𝑛3) 2.5

Swap Chain
[28]

Minimizing
maximum distance

Capacity
𝑂(𝑅 ⋅ |𝑇|(|𝑇|
+ |𝑊|)) Optimal

Gale-Shapley
[29]

Minimizing
#blocking pair

Capacity 𝑂(|𝑇||𝑊|) Optimal

Closest Pair
[30, 31]

 Capacity 𝑂(|𝑇||𝑊|2) Optimal

Chain [32] Capacity

𝑂((|𝑇| + |𝑊|)

⋅ (log𝑂(1)|𝑇|

+ log𝑂(1) |𝑊|))
Optimal

a In the constraints column, "–" is used to represent that the method supports no aforementioned

constraints.
b In the time complexity column, "–" is used to represent the case when time complexity is not

given. 𝑇 and 𝑊 are used to denote the set of tasks and workers, respectively.

17

4 Testing

In the previous sections, we have explored the Project Plan on Design. For this section, we have

developed a carefully examined Testing Plan that elaborates on the reasoning behind "what are we

testing" and "why"?

4.1 UNIT TESTING

Jest will be used for unit testing of our React components. How exactly they are tested is dependent
on which method we choose to implement. As discussed in Section 3.7, if we chose the "Greedy-
GEACC" method, we would try to make the maximum profit. In contrast, if we decided on the IDA
method, we would test that the algorithm produces a solution where the total distance traveled is
minimized.

• Optimizing Algorithm
o Our algorithm will be tested to ensure that it optimizes the worker-task problem's

desired aspect, as discussed above. It is imperative that we test how workers'
availability affects the final result.

• Alert System
o Our alert system will be tested to ensure that it notifies the correct workers of the

proper tasks and updates their schedules as changes to the initial dataset are
made.

4.2 INTERFACE TESTING

The different interfaces that we need to test are between the optimizing algorithm unit and the

alert system and the database and the optimization algorithm.

• Optimized algorithm results to the Alert System

o We need to verify that the results from our algorithm are passed correctly to the

alert system. This can be done by checking the algorithm's results with the data in

the alert system once it is received.

• Database information into the Optimizing Algorithm

o We need to make sure that data is being brought into the algorithm correctly from

the database.

4.3 ACCEPTANCE TESTING

We will develop a simple matrix for different variants of the problem. This will consist of factors
such as a) different algorithms being used on b) varying sizes of datasets with c) multiple workers
possessing d) varying skill sets. Additionally, we need to consider new data being inputted post-
assignment. E.g., we have already assigned worker A to Task 1, but worker A hasn't left his previous
job yet and would need to travel 20 minutes, but a new worker B just clocked-in and is only a 5-
minute drive away. For each of these, we will ensure that the results are either explicitly correct
(e.g., worker A is the one assigned to this task) or within expected boundaries of acceptance (e.g.,
the total travel time is less than 10 minutes).

4.4 RESULTS

This section, at the time of writing, is not applicable to us, as we do not enter the implementation
or testing phase until next semester. While we have analysis of different algorithms and tests from
other source material, we are not yet at the stage to report our own. With this in mind, we have

18

presented our plan for testing, and we will be duly reporting on the results in an Agile manner for
the upcoming semester once implementation begins in full.

5 Implementation

As described in Section 3.3, we will be creating both a web and a mobile application that will

implement the algorithm we design. This will need both a database to store the task generators and

workers, and a server to allow user devices to communicate with the backend. In Section 2.1 our

tasks for next semester are outlined. For each of the tasks there, we will create tickets on our Trello

board. Some of our first plans for implementation are to create a skeleton of the web and mobile

apps and create the task generator and worker tables in the database. As we approach next

semester, we will create more specific Trello tickets and assign them to each other to work on.

After the skeleton is created, we will move towards integrating in the more complex parts of the

application such as the Maps API and the algorithm. We will also begin unit testing at this time.

Although we discussed the tasks in Section 2.1, here we provide an example of what we foresee to

be the main approaches to one of our tasks. For the sake of example, we are using Task 8: Provide

alpha-version for end-user testing; collect feedback. In this task we will break down the different

elements, each of the following will be a ticket on our Trello board:

1. Create user table in database

2. Create worker table in database

3. Create assignment/matching table in database

4. Create a login/create account page

5. Link creating account to backend to add to database

6. Link login to database to query and verify username and password

7. Create page for requesting tasks

8. Link page for requesting tasks to database

9. Run task request through algorithm on the backend to assign the task a worker

10. Notify worker on the frontend that they have been assigned a task

11. Allow worker to accept task and confirm task completion

12. Update algorithm once task is completed

In addition to breaking down each task into specific tickets in the Trello board, we will also begin

testing different components of our app thoroughly. In section 4 we have provided more details on

our approaches to testing. We will start with unit tests, then move towards integration tests to

ensure the quality of our applications more thoroughly.

6 Closing Material

6.1 CONCLUSION

This semester we made significant progress planning our senior design project. We are incredibly

excited to begin implementing this project next semester. We will likely begin a bit earlier, during

Winter break, to give ourselves a bit more time to ensure a quality application.

19

6.2 REFERENCES

1. Tong, Y., Zhou, Z., Zeng, Y. et al. Spatial crowdsourcing: a survey. The VLDB Journal 29,

217–250 (2020). https://doi.org/10.1007/s00778-019-00568-7

2. Amsterdamer, Y., Milo, T.: Foundations of crowd data sourcing. SIGMOD Record 43(4), 5–

14 (2014)

3. Chittilappilly, A.I., Chen, L., Amer-Yahia, S.: A survey of general purpose crowdsourcing

techniques. IEEE Trans. Knowl. Data Eng. 28(9), 2246–2266 (2016)

4. Garcia-Molina, H., Joglekar, M., Marcus, A., Parameswaran, A.G., Verroios, V.: Challenges

in data crowdsourcing. IEEE Trans. Knowl. Data Eng. 28(4), 901–911 (2016)

5. Li, G., Wang, J., Zheng, Y., Franklin, M.J.: Crowdsourced data management: a survey. IEEE

Trans. Knowl. Data Eng. 28(9), 2296–2319 (2016)

6. Chen, L., Lee, D., Zhang, M.: Crowdsourcing in information and knowledge management.

In: Proceedings of the 23rd ACM International Conference on Information and Knowledge

Management (2014)

7. Chen, L., Lee, D., Milo, T.: Data-driven crowdsourcing: Management, mining, and

applications. In: 31st IEEE International Conference on Data Engineering, pp. 1527–1529

(2015)

8. Li, G., Zheng, Y., Fan, J., Wang, J., Cheng, R.: Crowdsourced data management: Overview

and challenges. In: Proceedings of the 2017 ACM International Conference on Management

of Data, pp. 1711–1716 (2017)

9. Guo, B., Liu, Y., Wang, L., Li, V.O.K., Lam, J.C.K., Yu, Z.: Task allocation in spatial

crowdsourcing: Current state and future directions. IEEE Internet Things J. 5(3), 1749–1764

(2018)

10. Tong, Y., Zhou, Z.: Dynamic task assignment in spatial crowdsourcing. In: Proceedings of

the 26rd ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems, vol. 10, no. 2, pp. 18–25 (2018)

11. Kazemi, L., Shahabi, C.: Geocrowd: enabling query answering with spatial crowdsourcing.

In: Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems, pp. 189–198 (2012)

12. Deng, D., Shahabi, C., Demiryurek, U.: Maximizing the number of worker's self-selected

tasks in spatial crowdsourcing. In: Proceedings of the 21st ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems, pp. 314–323 (2013)

13. Kazemi, L., Shahabi, C., Chen, L.: Geotrucrowd: trustworthy query answering with spatial

crowdsourcing. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems, pp. 304–313 (2013)

14. To, H., Ghinita, G., Shahabi, C.: A framework for protecting worker location privacy in

spatial crowdsourcing. PVLDB 7(10), 919–930 (2014)

15. Chen, Z., Fu, R., Zhao, Z., Liu, Z., Xia, L., Chen, L., Cheng, P., Cao, C.C., Tong, Y., Zhang,

C.J.: gMission: a general spatial crowdsourcing platform. PVLDB 7(13), 1629–1632 (2014)

16. Li, Y., Yiu, M.L., Xu, W.: Oriented online route recommendation for spatial crowdsourcing

task workers. In: International Symposium on Spatial and Temporal Databases, pp. 137–156

(2015)

https://doi.org/10.1007/s00778-019-00568-7

20

17. Tong, Y., She, J., Ding, B., Wang, L., Chen, L.: Online mobile micro-task allocation in

spatial crowdsourcing. In: 32nd IEEE International Conference on Data Engineering, pp.

49–60 (2016)

18. Tong, Y., She, J., Ding, B., Chen, L., Wo, T., Xu, K.: Online minimum matching in real-time

spatial data: experiments and analysis. PVLDB 9(12), 1053–1064 (2016)

19. Tong, Y., Wang, L., Zhou, Z., Chen, L., Du, B., Ye, J.: Dynamic pricing in spatial

crowdsourcing: a matching-based approach. In: Proceedings of the 2018 ACM International

Conference on Management of Data, pp. 773–788 (2018)

20. To, H., Shahabi, C., Xiong, L.: Privacy-preserving online task assignment in spatial

crowdsourcing with untrusted server. In: 34th IEEE International Conference on Data

Engineering, pp. 833–844 (2018)

21. GAIA Open Dataset (2019). https://outreach.didichuxing.com/ research/opendata.

Accessed May 26 2019

22. To, H., Fan, L., Tran, L., Shahabi, C.: Real-time task assignment in hyperlocal spatial
crowdsourcing under budget constraints. In: IEEE International Conference on Pervasive
Computing and Communications, pp. 1–8 (2016)

23. She, J., Tong, Y., Chen, L., Cao, C.C.: Conflict-aware eventparticipant arrangement. In: IEEE
31st International Conference on Data Engineering, pp. 735–746 (2015)

24. Cheng, P., Lian, X., Chen, L., Han, J., Zhao, J.: Task assignment on multi-skill oriented
spatial crowdsourcing. IEEE Trans. Knowl. Data Eng. 28(8), 2201–2215 (2016)

25. To, H., Shahabi, C., Kazemi, L.: A server-assigned spatial crowdsourcing framework. ACM
Trans. Spat. Algorithms Syst. 1(1), 2 (2015)

26. U, L.H., Yiu, M.L., Mouratidis, K., Mamoulis, N.: Capacity constrained assignment in
spatial databases. In: Proceedings of the 2008 ACM International Conference on
Management of Data, pp. 15–28 (2008)

27. Bei, X., Zhang, S.: Algorithms for trip-vehicle assignment in ride-sharing. In: Proceedings of
the 32nd AAAI Conference on Artificial Intelligence, pp. 3–9 (2018)

28. Long, C., Wong, R.C., Yu, P.S., Jiang, M.: On optimal worstcase matching. In: Proceedings
of the 2013 ACM International Conference on Management of Data, pp. 845–856 (2013)

29. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon.
69(1), 9–15 (1962)

30. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Closest pair queries in
spatial databases. In: Proceedings of the 2000 ACM International Conference on
Management of Data, pp. 189–200 (2000)

31. Yang, C., Lin, K.: An index structure for improving closest pairs and related join queries in
spatial databases. In: International Database Engineering & Applications Symposium, pp.
140–149 (2002)

32. Wong, R.C., Tao, Y., Fu, A.W., Xiao, X.: On efficient spatial matching. In: Proceedings of
the 33rd International Conference on Very Large Data Bases, pp. 579–590 (2007)

21

