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Project Vision

●Project Goal:

●Create a spatial crowdsourcing 
algorithm that runs on a mobile and web 
application that match workers with 
tasks from consumers.



Functional Requirements

● Allow task generators and workers to be able to create accounts (stored in DB)
● Take input of workers: skills, location, and reputation
● Take input of tasks: location(s) and skills required
● Optimize a schedule based on task and worker input
● Alert workers of incoming tasks
● Re-optimize schedule in the event of new constraints
● User interface for visualization of work schedule



Non-Functional Requirements

● Reliability - few bugs or issues that impede user experience
● Performance - algorithm is polynomial time and app is optimized for web/mobile
● Scalability - able to be used by a large number of users simultaneously
● Maintainability - readable code with documentation
● Usability - intuitive/easy to use



Constraints
● Must run as a mobile and desktop app
● Requires internet connection
● Google Maps API ($200 per month per person)
● Project must not exceed provided budget
● Project must be completed within given time frame



Algorithmic Models/Scenarios

4 types of spatial algorithms

● Static Matching

● Static Planning

● Dynamic Matching

● Dynamic Planning

Current Implementation plan
- Initial: Static Planning

- Final: Dynamic Planning



Current Algorithmic Approaches

Different algorithms have different… 

● Objectives

● Constraints

● Complexity



Conceptual Design Diagram

●A high level diagram of your design approach



System Architecture

Frontend Backend
● Server - Spring Boot
● Database - MongoDB or MySQL

Android StudioReact Native Web Javascript
React Native

Web App Mobile App



System Design - Component Diagram



System Design UI/UX
● Red lines = login/user
● Blue lines = create account/worker
● White boxes = text input
● Blue boxes = buttons



System Design Technologies



Project Plan – Metrics

●- Usability

●- Speed

- Bugs:

●- Algorithmic Efficiency
●



Project Milestones
1. Finalize the role/component assignments and start implementing collaborative modules

2. Complete unit testing; begin integration testing

3. Provide alpha-version for end-user testing; collect feedback

4. Finalize the revisions; release beta-version; run another set of end-user testing of functionalities

5. Finalize the user-manual; prepare for public release

6. Deploy the final version at GitLab; start the final report and presentation preparation



Immediate Next Steps

● Finalize tickets on Trello for each task and begin creating Git Issues for each ticket

● Assign tickets to team members

● Frontend - Begin implementation of  skeleton web application to be added onto

● Backend - Design a more in-depth database structure and begin implementation



Technical Challenges

● Implementing spatial crowdsourcing algorithm

● Familiarizing frontend team with React / Android development in React

● Familiarizing backend team with MongoDB and Springboot



Thank you!


