
Constrained 
Re-Planning in 

Spatial 
Crowdsourcing

Team 51
Steven Sheets (Backend Engineer, Test Engineer)

Logan Anderson (Frontend Engineer, Test Engineer)
Nicholas Heger (Frontend Engineer, Progress Manager)

Jared Weiland (Backend Engineer)
Jame Volpe (Frontend/Backend Engineer)

Client and Advisor
Goce Trajcevski



Project Vision

●Project Goal:

●Create a spatial crowdsourcing 
algorithm that runs on a mobile and web 
application that match workers with 
tasks from consumers.



Functional Requirements

● Allow task generators and workers to be able to create accounts (stored in DB)
● Take input of workers: skills, location, and reputation
● Take input of tasks: location(s) and skills required
● Optimize a schedule based on task and worker input
● Alert workers of incoming tasks
● Re-optimize schedule in the event of new constraints
● User interface for visualization of work schedule



Non-Functional Requirements

● Reliability - few bugs or issues that impede user experience
● Performance - algorithm is polynomial time and app is optimized for web/mobile
● Scalability - able to be used by a large number of users simultaneously
● Maintainability - readable code with documentation
● Usability - intuitive/easy to use



Constraints
● Must run as a mobile and desktop app
● Requires internet connection
● Google Maps API ($200 per month per person)
● Project must not exceed provided budget
● Project must be completed within given time frame



Algorithmic Models/Scenarios

4 types of spatial algorithms

● Static Matching

● Static Planning

● Dynamic Matching

● Dynamic Planning

Current Implementation plan
- Initial: Static Planning

- Final: Dynamic Planning



Current Algorithmic Approaches

Different algorithms have different… 

● Objectives

● Constraints

● Complexity



Conceptual Design Diagram

●A high level diagram of your design approach



System Architecture

Frontend Backend
● Server - Spring Boot
● Database - MongoDB or MySQL

Android StudioReact Native Web Javascript
React Native

Web App Mobile App



System Design - Component Diagram



System Design UI/UX
● Red lines = login/user
● Blue lines = create account/worker
● White boxes = text input
● Blue boxes = buttons



System Design Technologies



Project Plan – Metrics

●- Usability

●- Speed

- Bugs:

●- Algorithmic Efficiency
●



Project Milestones
1. Finalize the role/component assignments and start implementing collaborative modules

2. Complete unit testing; begin integration testing

3. Provide alpha-version for end-user testing; collect feedback

4. Finalize the revisions; release beta-version; run another set of end-user testing of functionalities

5. Finalize the user-manual; prepare for public release

6. Deploy the final version at GitLab; start the final report and presentation preparation



Immediate Next Steps

● Finalize tickets on Trello for each task and begin creating Git Issues for each ticket

● Assign tickets to team members

● Frontend - Begin implementation of  skeleton web application to be added onto

● Backend - Design a more in-depth database structure and begin implementation



Technical Challenges

● Implementing spatial crowdsourcing algorithm

● Familiarizing frontend team with React / Android development in React

● Familiarizing backend team with MongoDB and Springboot



Thank you!


