
Constrained 
Re-Planning in 

Spatial 
Crowdsourcing, 

PIRM II
Team 51

Steven Sheets (Backend Engineer, Test Engineer)
Logan Anderson (Frontend Engineer, Test Engineer)

Nicholas Heger (Frontend Engineer, Progress Manager)
Jared Weiland (Backend Engineer)

Jame Volpe (Frontend/Backend Engineer)

Advisor: Goce Trajcevski

sdmay21-51@iastate.edu



Project Recap - I

●Project Goal:

●Create a spatial crowdsourcing 
algorithm that runs on a mobile 
and web application that match 
workers with tasks from 
consumers.



Project Recap - II
4 types of spatial algorithms

● Static Matching

● Static Planning

● Dynamic Matching

● Dynamic Planning

Current Implementation plan
- Initial: Static Matching

- Final: Dynamic Planning



System Design - Component Diagram



Current Screenshots of Desktop App



Engineering Standards

● IEEE/ISO/IEC 29119-2-2013 - ISO/IEC/IEEE International Standard - 
Software and systems engineering —Software testing —Part 2:Test 
processes

● IEEE/ISO/IEC 29119-3-2013 - ISO/IEC/IEEE International Standard - 
Software and systems engineering — Software testing —Part 3: Test 
documentation

● 29119-4-2015 - ISO/IEC/IEEE International Standard - Software and 
system Engineering -- Software testing --Part 4: Test techniques

https://standards.ieee.org/standard/29119-2-2013.html
https://standards.ieee.org/standard/29119-2-2013.html
https://standards.ieee.org/standard/29119-2-2013.html
https://standards.ieee.org/standard/29119-3-2013.html
https://standards.ieee.org/standard/29119-3-2013.html
https://standards.ieee.org/standard/29119-3-2013.html
https://ieeexplore.ieee.org/document/7346375
https://ieeexplore.ieee.org/document/7346375


Engineering Constraints
● Must run as a mobile and desktop app
● Server needs to be able to handle algorithm processing
● Application requires internet connection
● Free Mapbox API 

○ 50,000 monthly map loads
○ 100,000 monthly direction requests
○ 100,000 monthly geocoding requests

● Project must work without a budget
● Project must be completed within the semester
●



Functional Requirements

● Allow employers and workers to be able to create accounts (stored in DB)
● Take input of workers: skills, location, and reputation
● Take input of tasks: location(s) and skills required
● Optimize a schedule based on task and worker input
● Alert workers of incoming tasks
● Re-optimize schedule in the event of new constraints
● User interface for visualization of work schedule



Non-Functional Requirements

● Reliability - few bugs or issues that impede user experience
● Performance - algorithm is polynomial time and app is optimized for web/mobile
● Scalability - able to be used by a large number of users simultaneously
● Maintainability - readable code with documentation
● Usability - intuitive/easy to use
● Modularity - be able to switch between components (like algorithm used)



Technical Challenges

● Implementing spatial crowdsourcing algorithm

● Establishing a server

● Frontend-backend communication/familiarizing ourselves with 

Apollo Graphql

● Familiarization with Mapbox API

● Working without in-person team interaction for much of the project

● Makes sure there is not memory bloat in the client



Immediate Next Steps
● Expand frontend-backend communication

● Work on implementing alternate spatial crowdsourcing algorithms

● Run our backend on a server and set up CI/CD.



Thank you!
Any questions, concerns, or 
comments are greatly appreciated! 
Looking forward to feedback!


