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Project Recap - I

●Project Goal:

●Create a spatial crowdsourcing 
algorithm that runs on a mobile 
and web application that match 
workers with tasks from 
consumers.



Project Recap - II
4 types of spatial algorithms

● Static Matching

● Static Planning

● Dynamic Matching

● Dynamic Planning

Current Implementation plan
- Initial: Static Matching

- Final: Dynamic Planning



System Design - Component Diagram



Current Screenshots of Desktop App



Engineering Standards

● IEEE/ISO/IEC 29119-2-2013 - ISO/IEC/IEEE International Standard - 
Software and systems engineering —Software testing —Part 2:Test 
processes

● IEEE/ISO/IEC 29119-3-2013 - ISO/IEC/IEEE International Standard - 
Software and systems engineering — Software testing —Part 3: Test 
documentation

● 29119-4-2015 - ISO/IEC/IEEE International Standard - Software and 
system Engineering -- Software testing --Part 4: Test techniques

https://standards.ieee.org/standard/29119-2-2013.html
https://standards.ieee.org/standard/29119-2-2013.html
https://standards.ieee.org/standard/29119-2-2013.html
https://standards.ieee.org/standard/29119-3-2013.html
https://standards.ieee.org/standard/29119-3-2013.html
https://standards.ieee.org/standard/29119-3-2013.html
https://ieeexplore.ieee.org/document/7346375
https://ieeexplore.ieee.org/document/7346375


Engineering Constraints
● Must run as a mobile and desktop app
● Server needs to be able to handle algorithm processing
● Application requires internet connection
● Free Mapbox API 

○ 50,000 monthly map loads
○ 100,000 monthly direction requests
○ 100,000 monthly geocoding requests

● Project must work without a budget
● Project must be completed within the semester
●



Functional Requirements

● Allow employers and workers to be able to create accounts (stored in DB)
● Take input of workers: skills, location, and reputation
● Take input of tasks: location(s) and skills required
● Optimize a schedule based on task and worker input
● Alert workers of incoming tasks
● Re-optimize schedule in the event of new constraints
● User interface for visualization of work schedule



Non-Functional Requirements

● Reliability - few bugs or issues that impede user experience
● Performance - algorithm is polynomial time and app is optimized for web/mobile
● Scalability - able to be used by a large number of users simultaneously
● Maintainability - readable code with documentation
● Usability - intuitive/easy to use
● Modularity - be able to switch between components (like algorithm used)



Technical Challenges

● Implementing spatial crowdsourcing algorithm

● Establishing a server

● Frontend-backend communication/familiarizing ourselves with 

Apollo Graphql

● Familiarization with Mapbox API

● Working without in-person team interaction for much of the project

● Makes sure there is not memory bloat in the client



Immediate Next Steps
● Expand frontend-backend communication

● Work on implementing alternate spatial crowdsourcing algorithms

● Run our backend on a server and set up CI/CD.



Thank you!
Any questions, concerns, or 
comments are greatly appreciated! 
Looking forward to feedback!


